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X-33 INTEGRATED TEST FACILITY EXTENDED
RANGE SIMULATION

Ashley Sharma
National Aeronautics and Space Administration

Dryden Flight Research Center
Edwards, California

ABSTRACT

In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was s
to provide continuous range communications of the X-33 vehicle from launch at Edwards Air 
Base, California, through landing at Malmstrom Air Force Base, Montana, or at Michael Army Air F
Utah. An extensive real-time range simulation capability is being developed to ensure successful c
nications with the autonomous X-33 vehicle. This paper provides an overview of the various lev
simulation, integration, and test being developed to support the X-33 extended range subsystem
subsystems include the flight termination system, L-band command uplink subsystem, and S-ban
etry downlink subsystem.

KEY WORDS
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Analysis, Plasma Attenuation, Link Margin

NOMENCLATURE

dB Decibel 

dBm Decibel-milliwatt

DES Data Enhancement System

DFRC Dryden Flight Research Center

DGPS Differential Global Positioning System

DGSA Dynamic Ground Station Analysis

EIRP Effective Isotropic Radiated Power

ER Earth Research
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FTS Flight Termination System

GPIB General Purpose Interface Bus

IF Intermediate Frequency

IIP Instantaneous Impact Prediction

ITF Integration and Test Facility

LMCMS Launch and Mission Control Monitoring System

NASA National Aeronautical and Space Administration

NRZ-L Non-return to Zero-Level

OCC Operations Control Center

PCM Pulse Code Modulation

PTP Programmable Telemetry Processor

RCO Range Control Officer

RCVR Receiver

RF Radio Frequency

RS Radio Standard

RSO Range Safety Officer

Rx Receive

TTL Transitor–Transitor Logic

Tx Transmit

VDA Video Distribution Amplifier

VHM Vehicle Health Monitor

VMC Vehicle Mission Computer

INTRODUCTION

The X-33 advanced technology demonstrator launch vehicle is a 50-percent scaled model of the 
launch vehicle proposed by Lockheed Martin Skunk Works, Palmdale, California. The vehicl
autonomously follow a suborbital flight profile, reenter the atmosphere, and descend for a hor
landing. When flying an autonomous vehicle at hypersonic speeds and over populated areas, min
the risk to public safety is imperative. This reduction in risk can only be achieved with an acce
degree of confidence by validating the reliability and accuracy of the radar tracking system, telem
downlink, uplink and flight termination systems (FTS) at every stage of the mission. The X-33 p
range requirement for mission safety and success from the time of launch through landing could
accomplished using the existing resources available at NASA Dryden Flight Research Center (D
Edwards, California. The DFRC was challenged to develop an extended range capability that cou
and communicate with the vehicle beyond the airspace at Edwards Air Force Base (EAFB), Cal
2
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out to either the landing site in Michael Army Airfield, Utah, or in Malstrom Air Force Base, Mont
The technical approach used to address this challenge will be comprised of systematically develo
range system in six incremental phases of integration and test, beginning at the Integration a
Facility (ITF) at NASA DFRC and ending with a complete end-to-end check of all range systems in situ.
This paper describes the simulation models developed during the first phase of integration. Integr
these models to mission hardware during the subsequent phases is also discussed. Use of trade
names of manufacturers in this document does not constitute an official endorsement of such pro
manufacturers, either expressed or implied, by the National Aeronautics and Space Administratio

X-33 EXTENDED RANGE SIMULATION OVERVIEW

All flight and mission critical vehicle subsystem components, such as the vehicle health monitor, m
computers, flight controls, and traffic on the 1553 bus, are modeled in software to provide an
assessment of the expected performance of that system. Because the range system will be
communications link between the Operations Control Center (OCC) and the vehicle, this system
deemed mission critical. As such, failure of any component that could affect communication link
endanger the mission and compromise public safety, which is completely unacceptable. It becam
dantly clear that as a first step toward the integration and test of the range system, a simulatio
entire range system needed to be developed to provide an initial evaluation.

Figure 1 shows the extended range coverage area. Each circle provides radar coverage for an
mate area of 235 nautical miles.

Figure 1. Extended range coverage area.
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Range Simulation

The purpose of the range simulation is to compute the total radio frequency (RF) link margins a
stage of the flight trajectory and to provide intermediate data, such as plasma attenuation, space 
ground-to-vehicle and vehicle-to-ground look angles. The simulation has the flexibility of perfor
both real-time hardware-in-the-loop (HIL) or stand alone operations. It also has the freedom to va
parameters to optimize the analysis. A specification for bit error rate for digital communications 
mines the required signal-to-noise ratio to accurately reproduce the transmitted data. A pad or
above this required signal-to-noise ratio is then used to ensure that a good RF link is maintained 
the vehicle and the OCC at all times. In the same manner, a margin above the required signal-
ratio for analog transmission is also specified.

The simulation model determines the vehicle position and attitude and passes this data on to t
model at an update rate of once every 20 seconds. The Dynamic Ground Station Analysis (DGS
will receive the same data along with supplementary vehicle information at an update rate of onc
second. As the vehicle approaches the range tracking limits of the ground radar site, responsi
track the vehicle is handed over to the next radar site. Handovers between ground sites for the 
uplink systems are accomplished by setting maximum attenuation levels for the current site and
1-second delay, setting DGSA calculated attenuations for the new site. This test mimics in softw
delays involved in powering down one ground transmitter while bringing up another. It also ass
optimizating ground site handovers during the actual mission.

The DGSA model, which is at the heart of the range simulation system, performs a timepo
timepoint dynamic link margin analysis for spacecraft-to-ground and ground-to-spacecraft RF link
three links supported are the flight termination, command uplink, and telemetry downlink. A simu
model of the X-33 vehicle for a preprogrammed flight trajectory provides the vehicle pos
coordinates and look angles in azimuth and elevation for every point in space for a delta time of 1 
A separate antenna radiation pattern computes the gain of the electromagnetic field, in magnit
phase, for all 360° of azimuth angles and spanning 180° in elevation. This computation is accom
by the phasor addition of the electromagnetic fields emanating from the top and bottom antenn
link margins for the ground-to-vehicle path are defined as the difference between the calc
signal-to-noise ratio in the intermediate frequency (IF) bandwidth to the required IF signal-to-noise
For example,

Linkmargin = IFcalcsnr – IFreqsnr (1)

The required link margins for the uplink and flight termination systems are 3 and 12 dB, respectiv
figure of merit used to determine the actual power received at the vehicle, correcting for thermal n
a ratio of the antenna gain (G) divided by thermal noise (T). The Effective Isotropic Radiation 
(EIRP) can be determined by subtracting any passive losses between the transmitter and antenna
transmitted power. Antenna gain and pointing loss associated with boresite antenna gain must
taken into account. 

EIRP = Pt – Lpass – Lpoint + Ggnd (2)
4
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where Pt is the power transmitted by the ground antenna; Lpass are passive losses in the cable and throu
connectors; Lpoint is the pointing loss associated with directing the antenna; and Ggnd is the gain of the
antenna taking into account the effective area, aperture efficiency, and wavelength.

Losses or attenuation factors that arise during the transmission of an electromagnetic wave thro
atmosphere are referred to as channel losses. These losses can be comprised of free space, at
rain, polarization, and plasma losses. The power incident at the vehicle antenna is the cumulative
loss subtracted from the EIRP. 

Prec = EIRP – Latmos – Lrain – Lpol – Lplasma – Lspace (3)

where Prec is the power received at the vehicle antenna; and Latmos are atmospheric losses, which in th
absence of any condensation or dust particles is caused by oxygen and water vapor in the atm
Attenuation because of rain, Lrain, and polarization loss, Lpol, are assumed to be negligible at th
frequency. By far, the greatest uncertainty as far as channel losses are concerned arises from th
tions for the attenuation of electromagnetic waves due to the effects of plasma, Lplasma, during reentry.
Plasma analysis is still in the evolutionary stage and is being conducted by NASA Goddard Spac
Center, Greenbelt, Maryland. At this point, however, all indications are that affects at ultrahigh fre
cies (UHF) will be for a minimal amount of time. Reference 1 provides further details regarding
plasma analysis. The free space dispersion loss, Lspace, is based on the slant range to the vehicle a
assumes clear sky conditions.

The vehicle G/T is arrived at by subtracting the passive losses, Lpass/veh, between the vehicle antenna t
the uplink receiver from the gain of the antenna, Gveh. The system noise density, Nsys, corrected for
thermal noise by way of Boltzman constant K is also taken into consideration.

G/T = Gveh – Lpass/veh – (Nsys – K) (4)

With the signal-to-noise ratio in the intermediate frequency bandwidth, IFbw, the calculated signal-to-
noise ratio, IFsnrcalc, is given by

IFsnrcalc = Prec + G/T – 10*log10(IFbw) (5)

DYNAMIC GROUND STATION ANALYSIS

Figure 2 shows a typical output from DGSA for the command uplink during a simulated flig
Malmstrom AFB. Note the short periods where the limiting margin drops to zero that occ
time 2:24 and approximately 5 minutes into the flight. These periods imply that there is a complete
out of the RF signal. Further investigation into these periods reveals that the primary cause of atte
is an anomaly in the plasma attenuation calculations. This anomaly will be corrected in the next up
the algorithm.
5
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Figure 2. Dynamic Ground Station Analysis output.

Radar Model

The radar model is accessed by DGSA once each second to determine which ground site is trac
vehicle. Geodetic coordinates for latitude, longitude, and spheroid height of the vehicle during its
tory are received from the X-33 flight simulation program. Radar data from all of the ground sit
sent to the Data Enhancement System (DES) in position information-processing system format
the nominal trajectory is adjusted to match the current tracking data. The radar simulation p
computes the geometric look angles in azimuth and elevation from up to 10 radar sites to the targ
cle. When the range value at any one of these radar sites drops below 235 nautical miles, a rang
set for that radar. Similarly, when the elevation value rises above 2.5°, an elevation flag is set. W
flags set, the vehicle is within the program-specified tracking limits, and an on track flag is set f
particular radar. Because more than one radar may be on the target at the same time, the rada
and shortest range to the target is selected as prime and a selection flag is set. The DES then s
source-adjusted radar data to all of the ground sites. 

Integration Phases

Phase 1 of range integration is based entirely on executing all software models to simulate th
parameters and to verify that the RF links are within the budgets allocated. This simulation redu

DYNAMIC GROUND STATION ANALYSIS – UPLINK
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risk of damage to any hardware during the later phases and will require the implementation o
software to model vehicle antenna radiation patterns. The radar model will provide range to the 
for radar tracking purposes along with azimuth and elevation angles. Simulations using the DGSA
are then run for a complete link analysis of each of the three systems. The DGSA model includes 
ity to modify some of the ground station parameters, such as antenna gains, aperture, and pola
providing the flexibility of running what if scenarios for a better understanding of how significant 
affect of these parameters are on the overall analysis.

Phase 2 will provide the ability to simulate range system operations using actual flight hardwar
operation is accomplished by connecting X-33 flight hardware for the telemetry, uplink, and flight 
nation systems and by integrating them with the software simulation developed in phase 1. Dur
time, the DGSA tool controls the power levels at the telemetry, FTS, and uplink receivers based
internal computations. This tool also performs handoffs to the prescribed ground sites, depending
vehicle location.

In phase 3, once the RF transmission is validated through a hard link, the next step is to dupli
same tests by transmitting through space for a more realistic determination of the levels and affect
electromagnetic interference that may exist. Vehicle antennas are connected to the ITF to trans
receive from the Aeronautical Test Facility 1 and the DFRC FTS. Figure 3 shows how these syste
be interconnected during this phase.

Figure 3. Phase 3 flight hardware and local range.

Phase 4 will bring all the range systems to be deployed at the remote sites to DFRC for an initial
checkout. The primary goal is to ensure that the systems to be located at each remote site are i
together and can transfer data from system to system before deployment.
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Phase 5 will deploy the range systems to support a flight to Malmstrom AFB. The remote sy
checked out during phase 4 will be deployed to Mountain Home, Idaho, for over flight and to Malm
AFB for landing. The ER-2 flight testbed will be used to check the functionality of the communic
systems onboard and the communication links to all of the ground systems.

Phase 6 will deploy range systems to support a flight to Dugway Proving Ground, Utah. Once ag
ER-2 flight testbed will be used to validate the entire range systems operation with each of the 
stations. Communication links between the ground station and the vehicle during the flight will be
fied, and a better assessment can be made of the site handovers and where they occur.

Integration Test Facility Range Simulation Hardware

Although both top and bottom communication antennas on the vehicle are used for simultane
transmission and reception, only one transmitter will be active at any time. For the purpose of inte
in the laboratory only, the top antenna has been designated to the S-band transmit path. The tra
outputs 10 watts or 40 dBm of average power, which for redundancy is divided equally between 
ports at the hybrid coupler. Figure 4 shows the vehicle communications subsystem architecture
includes the RF combiner unit.

Figure 4. Communications subsystem architecture.

Figure 5 shows an example to illustrate the hardware interconnections for the S-band transmit 
After attenuating the transmitted signal by 60 dB, it is separated into three paths that lead into te
receivers resembling three simulated ground sites. Each site is distinguished by the RF power inp
receivers, which in turn controls the attenuation level settings computed by DGSA. The amo
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attenuation must be sufficient to completely swamp out all the RF power in order to simulate a co
dropout. At the same time, care must be taken not to saturate the receivers. A programmable te
processor takes in derandomized non-return-to-zero-level (NRZ-L) telemetry data from the three
dosites and determines which of the three contain the most coherent data to be passed on to th
and Mission Control Monitoring System (LMCMS). A secondary output from the best source sele
fed into the Range Safety Officer’s (RSO) station, where data are decommutated. In addition, the 
tered vehicle parameters are displayed on one of the RSO monitors.* 

Figure 5. X-33 Integration and Test Facility S-band simulation hardware design.

The bottom antenna port is terminated with a 50-ohm load for the transmit path. This port also co
to receivers and the vehicle mission computer for the uplink path. The uplink data stream is pa
inside the telemetry and range interface processor where the secondary L-band flight terminatio
mand and differential GPS corrections are interlaced with the uplink command. Once again, the
model computes the signal power levels expected at the vehicle taking into consideration the pos
the vehicle and all the channel losses. A signal generator output power level is then attenuate
computed value. In addition, the command uplink data stream is frequency modulated onto the
carrier. The flight termination command is initiated from the master control panel at the RSO sta
from the remote control panel at one of the ground sites. The termination command is then relaye
LMCMS for secondary L-band transmission. The termination command in the form of open and g
discretes are then tone encoded. As with the command uplink channel, the DGSA model comp

*See Darryl Burkes’ paper titled “X-33 Telemetry Best Source Selection, Processing, Display, and Simulation
Comparison,” (also available in these proceedings). This paper provides a detailed discussion of the best source sel
decommutated telemetry display.
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signal power levels expected at the vehicle, taking into consideration the position of the vehicle 
channel losses. A signal generator output power level is then attenuated to this computed value
flight termination tones are frequency modulated onto its carrier. The second output from the RF 
is used to monitor the received RF termination command along with its decoded tones for confir
that the tones were correctly sent and received.

Range Safety Officer’s Station

The RSO station located in the ITF will be the first of five RSO stations built for the X-33 program
station will be used to provide training for range control and range safety personnel. The RSO
consists of a stand-alone processing system that displays radar and telemetry data on an insta
impact prediction (IIP) system that will be used for the evaluation of X-33 flights. The station inclu
system to decommutate the telemetry data, to display critical vehicle parameters, and to outpu
positioning system (GPS) as well as inertial navigation system (INS) parameters over ethernet to
systems. The IIP system calculates the debris pattern for the vehicle, based upon its location an
tory. These results will be used to determine suitable locations for a safe flight termination. The R
tion also includes the Test and Evaluation Command and Control System which is used by the
Control Officer to display Federal Aviation Administration data. 

CONCLUSION

The X-33 range requirements to provide continuous communications between the vehicle and 
stations will be verified by using an innovative approach to provide real-time simulations, analys
tests. The risk to public safety will have been greatly reduced by this analysis, along with results o
from the flight testbed missions. The extended range will support X-33 flights with a great confide
mission success.
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termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem
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